Dihydropyridine Ca(2+) channel blockers increase cytosolic [Ca(2+)] by activating Ca(2+)-sensing receptors in pulmonary arterial smooth muscle cells.
نویسندگان
چکیده
RATIONALE An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation and pulmonary vascular remodeling. The dihydropyridine Ca(2+) channel blockers, such as nifedipine, have been used for treatment of idiopathic pulmonary arterial hypertension (IPAH). OBJECTIVE Our previous study demonstrated that the Ca(2+)-sensing receptor (CaSR) was upregulated and the extracellular Ca(2+)-induced increase in [Ca(2+)](cyt) was enhanced in PASMC from patients with IPAH and animals with experimental pulmonary hypertension. Here, we report that the dihydropyridines (eg, nifedipine) increase [Ca(2+)](cyt) by activating CaSR in PASMC from IPAH patients (in which CaSR is upregulated), but not in normal PASMC. METHODS AND RESULTS The nifedipine-mediated increase in [Ca(2+)](cyt) in IPAH-PASMC was concentration dependent with a half maximal effective concentration of 0.20 µmol/L. Knockdown of CaSR with siRNA in IPAH-PASMC significantly inhibited the nifedipine-induced increase in [Ca(2+)](cyt), whereas overexpression of CaSR in normal PASMC conferred the nifedipine-induced rise in [Ca(2+)](cyt). Other dihydropyridines, nicardipine and Bay K8644, had similar augmenting effects on the CaSR-mediated increase in [Ca(2+)](cyt) in IPAH-PASMC; however, the nondihydropyridine blockers, such as diltiazem and verapamil, had no effect on the CaSR-mediated rise in [Ca(2+)](cyt). CONCLUSIONS The dihydropyridine derivatives increase [Ca(2+)](cyt) by potentiating the activity of CaSR in PASMC independently of their blocking (or activating) effect on Ca(2+) channels; therefore, it is possible that the use of dihydropyridine Ca(2+) channel blockers (eg, nifedipine) to treat IPAH patients with upregulated CaSR in PASMC may exacerbate pulmonary hypertension.
منابع مشابه
Functional characterization of voltage-dependent Ca(2+) channels in mouse pulmonary arterial smooth muscle cells: divergent effect of ROS.
Electromechanical coupling via membrane depolarization-mediated activation of voltage-dependent Ca(2+) channels (VDCC) is an important mechanism in regulating pulmonary vascular tone, while mouse is an animal model often used to study pathogenic mechanisms of pulmonary vascular disease. The function of VDCC in mouse pulmonary artery (PA) smooth muscle cells (PASMC), however, has not been charac...
متن کاملPathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension.
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (I...
متن کاملEnhanced Ca(2+)-sensing receptor function in idiopathic pulmonary arterial hypertension.
RATIONALE A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. Increased resting [Ca(2+)](cyt) and enhanced Ca(2+) influx have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH). OBJECTIVE We examined whether the extr...
متن کاملPulmonary vascular response to normoxia and K(Ca) channel activity is developmentally regulated.
To address developmental regulation of pulmonary vascular O(2) sensing, we tested the hypotheses that 1) fetal but not adult pulmonary artery smooth muscle cells (PASMCs) can directly sense an acute increase in O(2), 2) Ca2+-sensitive K(+) (K(Ca)) channel activity decreases with maturation, and 3) PASMC K(Ca) channel expression decreases with maturation. We used fluorescence microscopy to confi...
متن کاملPhysiological properties and functions of Ca(2+) sparks in rat intrapulmonary arterial smooth muscle cells.
Ca(+) spark has been implicated as a pivotal feedback mechanism for regulating membrane potential and vasomotor tone in systemic arterial smooth muscle cells (SASMCs), but little is known about its properties in pulmonary arterial smooth muscle cells (PASMCs). Using confocal microscopy, we identified spontaneous Ca(2+) sparks in rat intralobar PASMCs and characterized their spatiotemporal prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 112 4 شماره
صفحات -
تاریخ انتشار 2013